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ABSTRACT

Tethered particle motion (TPM) monitors the vari-
ations in the effective length of a single DNA
molecule by tracking the Brownian motion of a
bead tethered to a support by the DNA molecule.
Providing information about DNA conformations
in real time, this technique enables a refined
characterization of DNA–protein interactions. To
increase the output of this powerful but time-
consuming single-molecule assay, we have
developed a biochip for the simultaneous acquisi-
tion of data from more than 500 single DNA mol-
ecules. The controlled positioning of individual
DNA molecules is achieved by self-assembly on
nanoscale arrays fabricated through a standard
microcontact printing method. We demonstrate the
capacity of our biochip to study biological
processes by applying our method to explore the
enzymatic activity of the T7 bacteriophage
exonuclease. Our single molecule observations
shed new light on its behaviour that had only been
examined in bulk assays previously and, more
specifically, on its processivity.

INTRODUCTION

After several decades of development, single molecule
analyses are now recognized as extremely potent and
informative tools for exploring the biology of enzymes
(1). To study the activity of enzymes on nucleic acids
and more generally DNA–protein interactions, various
single molecule methods, relying mostly on optical micros-
copy, can be used (2–4). The tethered particle motion

(TPM) technique, contrary to optical or magnetic
tweezers, explores the conformational statistics of the
DNA molecule in the absence of an external force (5,6).
For TPM, a bead of a diameter comprised between 40 and
500 nm is tethered to a glass surface by an individual
nucleic acid molecule (in the range 300–3000 bp for
dsDNA and 4500–45 000 nt for ssDNA or RNA). This
so-called tethered bead is tracked by videomicroscopy to
evaluate the end-to-end distance of the DNA molecule in
real time (Figure 1A), and thus delivers information
on changes in the conformation of DNA consecutive
to looping, bending, direct elongation or shortening,
dsDNA to ssDNA conversion or vice versa. TPM-based
approaches have permitted to obtain new insights into the
mechanistics of several proteins that act on nucleic acids,
such as nucleases (7), recombinases (8,9), polymerases
(10,11) and transcriptional repressors (12–14).
Despite all these possible applications, the use of TPM

remains rather limited to date. The main reason for this is
inherent to all single-molecule approaches and lies with
very long data acquisition due to the need to repeat
single molecule observations one after the other in order
to obtain statistical support. A way to overcome this
drawback consists of targeting individual DNA molecules
to multiple defined location sites that can be observed in
parallel (Figure 1B). Solutions have been proposed
(15–17) but they require specific equipment and have
restricted conditions of use.
Here, we present an easy-to-implement method, based

on soft lithography (18), for conducting robust TPM
analyses on several hundreds of molecules simultaneously.
After demonstrating the validity of our biochip, we used it
to explore the enzymatic activity of the T7 bacteriophage
exonuclease (T7-exo), which catalyses dsDNA to ssDNA
conversion from a free 50-end. This nucleic acid enzyme
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that had been examined only in bulk assays previously is
classified as non-processive. In a single 1 h round of
observation, we were able to estimate dsDNA to ssDNA
conversion rate and showed that T7-exo is processive.

MATERIALS AND METHODS

Patterning of anchoring sites on functionalized
glass coverslips

Glass coverslips (24� 36mm2, thickness #1, Menzel-
Gläser) are firstly cleaned by immersion into a sulfoch-
romic acid solution (30min), extensively rinsed with
deionized water and dried under a nitrogen flow.
The cleaned coverslips are epoxydized by an incubation
(1 h 30min at room temperature) in isopropanol
with 3-glycidoxypropyldimethoxymethylsilane 2.5% v/v,
deionized water 0.5% v/v and N,N-dimethylbenzylamine
0.05% v/v (Sigma-Aldrich). The treatment is followed by
a sonication in isopropanol during 5min, and the cover-
slips are finally rinsed with a large amount of deionized
water and dried under nitrogen flow. Coverslips can be
stored in a vacuum dessicator for up to 1 month before
further use.
Silicon (Si) masters with inverted patterns, fabricated by

photolithography and reactive ion etching, are used to
mould the polydimethylsiloxane (PDMS) stamps. For
the large scale (5 mm) square features, Si masters were
provided by LAAS-CNRS (square patterns: 5 mm in
length, pitch: 10 mm, depth of features: 1 mm). The
Si masters with submicrometre-sized features (square
patterns: 800 nm in length, pitch: 3 mm, depth of
features: 1 mm) were purchased from AMO (Germany).
The Si masters were systematically silanized with
octadecyltrichlorosilane (OTS, 98%, Sigma-Aldrich)
prior to the PDMS casting process. PDMS stamps are
obtained using the following procedure. PDMS (Sylgard
184, DowCorning, USA) is vigorously mixed in a 10/1

prepolymer/curing agent ratio, degased in a dessicator,
poured on the Si masters and cured at 65�C for 8 h.
PDMS stamps are inked with 40 ml of a rhodamine-
labelled neutravidin solution (20mg/ml in PBS, pH7.4)
for 1min, rinsed with deionized water and dried under
nitrogen flow. The inked PDMS stamps are put in confor-
mal contact with epoxydized coverslips for 1min. PDMS
stamps are cut in small pieces (�4mm2). This size allows
us to print arrays of up to 40 000 spots for large-scale
features stamps and of 440 000 spots for submicrometre
features stamps.

Construction of DNA templates

DNA substrates were obtained by PCR amplification
from plasmid templates with a 21-digoxigenin-modified
forward primer and a 21-biotin-labelled reversed primer
(Eurogentec) as previously described (19). The DNA sub-
strates of 401, 798, 1500 and 2083 bp were produced using
pAPT72 as a template (positions: 1460–1861, 1063–1861,
361–1861, 4625–1861, respectively).

Formation of the DNA-bead complexes

Antidigoxigenin (Fab fragments from sheep, Roche
Applied Science, Germany) was chemically linked to
carboxylate-modified beads (F1-XC030, Merck-Estapor,
Germany). Fifty microlitres (0.5mg) of beads were
washed with an activation buffer (AB1X, Ademtech),
then mixed slowly for 30min at 37�C with
N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC,
Sigma-Aldrich, 4mg/ml in AB1X). Antidigoxigenin
(75 ml at 200 mg/ml in PBS, pH 7.4) was added to the
beads and mixed slowly for 2 h at 37�C. Three hundred
microlitres of 0.5mg/ml BSA was added (in AB1X) and
mixed slowly for 30min at 37�C. The functionalized
beads were washed three times with storage buffer
(SB1X, Ademtech) by centrifugation (8min, 10 000 g)

Figure 1. Parallel single-molecule assays for the analysis of DNA dynamics and interactions with proteins by TPM analysis. (A) Schematic for the
monitoring of the conformational dynamics of a DNA tether bearing a bead at its free end. (B) Scheme of a nanoarray for parallel TPM
measurements.
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and resuspended with 100 ml of SB1X. The functionalized
beads are stable for at least 2 months when stored at 4�C.

The DNA–bead complexes are assembled at a 1/2.5
molar ratio. DNA molecules and beads at 200 and 500
pM, respectively, were mixed for 30min at room tempera-
ture in a phosphate buffer (KH2PO4 1mM, Na2HPO4

3mM, NaCl 150mM, pH 7.4, Euromedex, France) con-
taining two blocking agents: BSA (1mg/ml, Sigma-
Aldrich) and Pluronic F-127 (1mg/ml, Sigma-Aldrich).
For the experiments with the T7-exo and restriction
enzymes, New England Buffer 2 (50mMNaCl,
10mMTris–HCl, 10mMMgCl2, 1mMdithiothreitol, pH
7.9 at 25�C, New England Biolabs) was used as a substi-
tute for the phosphate buffer.

Assembly of the flow cell for TPM experiments

A 250-mm thick adhesive spacer (Grace Bio Labs) was cut
to obtain a 10-mm-long and 3-mm-wide channel in the
middle and used to seal the patterned coverslip to a micro-
scope slide into which two holes spaced by 10mm were
previously drilled. The so-constructed flow cell was
incubated with the buffer described in the previous para-
graph for 30min. DNA–bead complexes were then
incubated overnight in the passivated flow cell. The flow
cell was rinsed before starting the observations.

Instrumentation for microscopy imaging

The tethered beads of 300-nm diameter were visualized at
21±1�C by using a dark-field microscope (Axiovert 200,
Zeiss) equipped with a x32 objective and an additional
x1.6 magnification lens, on a CMOS camera Falcon
1.4M100 (pixel size: 7.4mm, Dalsa) at a recording rate of
25 frames/s. The field of observation, where beads are
correctly illuminated and thus detected, covers an area
of �150 mm x 125 mm, corresponding to approximately
2080 sites (800 nm sized) of neutravidin.

Calculation of the amplitude of motion of the bead

A software developed by Magellium (France) allows us to
acquire the images, to track in real time the positions of all
the beads visible in the field of observation as well as to
compute their amplitudes of motion. These include cor-
rections for experimental drift and for the eventual bias
induced by the particle depending on its size relative to
that of the DNA tether. We invite the reader to refer to
ref. (20) for the detailed calculations of the amplitude of
motion of the bead.

Control experiments of the ds to ssDNA conversion with
restriction enzymes

The 2083 bp dsDNA contains restrictions sites for EcoRI
(position 224), BamHI (position 1790) and EcoNI (pos-
ition 2037). It also contains a specific site for the nicking
endonuclease Nb.BbvCI. Nb.BbvCI cleaves one strand on
the 2083 bp dsDNA substrate at position 563. The
so-created 50-end will be the preferred site of attack of
T7 exonuclease. After preparation of the flow cell
(see above), the valid wriggling beads were counted.
Then the restriction enzymes were injected at 1 U/ml in

the NEB2 buffer (containing BSA 1mg/ml and Pluronic
F127 1mg/ml) and incubated for 5min. The chamber was
then washed (�20x chamber volume) before counting the
valid beads still present. For testing the activity of
the T7-exo, the enzyme was incubated in the NEB2
buffer for 20min (at 0.5 U/ml) before the addition of the
restriction enzymes. All the enzymes were used as
purchased from New England Biolabs without any
further purification.

RESULTS AND DISCUSSION

Biochip design and fabrication

We developed an approach for obtaining a stable an-
choring of the DNA molecules together with a
minimization of non-specific interactions of the DNA
or the tethered beads with the support and between
themselves. This is a major challenge in such experiments
based on the immobilization of DNA molecules on a
surface (21). Our method relies on the patterning of
neutravidin as an anchoring molecule into regular
arrays of micrometer-sized sites on a glass support by
the microcontact printing technique (22). After inking
with rhodamine-labelled neutravidin, a PDMS stamp is
put in conformal contact with an epoxidized glass cover-
slip to transfer the proteins adsorbed on top of the relief
structures to the coverslip. Covalent links are expected to
form between the neutravidin and the epoxy groups on
the slides. With a view to test this property, we printed
millimetre-sized arrays of relatively large squares
(sides=5 mm, periodicity=10 mm) on the epoxidized
coverslips. Accordingly, imaging of the coverslips by
fluorescence microscopy revealed an excellent stability
of the deposits through the extensive rinsing carried
out just after removing the stamp and even after a
week of conservation under vacuum (�10 mbar)
(Figure 2A). The next step involved defining the condi-
tions leading to the specific attachment of DNA–bead
complexes to the sites, with a large majority of beads
seen wriggling and only scarce beads stuck either on or
outside the sites. For this, we used dsDNA molecules
(2083 bp) carrying biotin on one 50-end and digoxigenin
on the other, which were conjugated by incubation at a 1
to 2.5 ratio to 300 nm diameter polystyrene beads coated
with anti-dig antibody. The patterned coverslips were
introduced in a conventional flow cell adapted to
optical microscope observations (23); various blocking
agents were then injected, and the pre-assembled
DNA–bead complexes were finally added for an over-
night incubation, before observation the next day. This
led us to identify an optimized cocktail of blocking
agents (see ‘Materials and Methods’ section), leading to
the highly specific localization of the DNA–bead
complexes to the neutravidin printed sites of the arrays
in the quasi-total absence of attachment of the complexes
on the bare parts of the surface (Figure 2B). However, as
expected in this case of large-scale arrays with dimen-
sions of the sites much larger than those of a DNA–
bead complex, multiple attachments of DNA–bead
complexes per site were observed.
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To obtain the controlled attachment of a single DNA–
bead complex on each site of the support, we reasoned
that if the size of the printed features was inferior to
twice the characteristic size of the DNA–bead complexes
under study, then steric hindrance would impede the
approach of another complex after the attachment of a
first one. The characteristic size of a DNA–bead
complex is given by Dcomplex=Dbead+RDNA, where
Dbead is the bead diameter and RDNA is the end-to-end
distance of the DNA molecule. RDNA is equivalent to its
Flory radius RF& 2 a Lp (L/2Lp)

3/5, where a is the
inter-base distance (=0.34 nm), Lp is the persistence
length (=150 bp for dsDNA) and L the number of base
pairs of the DNA molecule. For the 300 nm diameter
beads used here and the shortest dsDNA molecules of
the TPM applicable range (300 bp), this estimation sets
the maximal dimension of the sites at 800 nm. We thus
pursued the experiments by using arrays of 800-nm-sized
squares with a spatial periodicity of 3 mm to minimize the
interferences between the beads from adjacent sites, while

remaining achievable over millimetre-sized areas by con-
ventional soft lithography. AFM imaging of the printed
coverslips revealed squares with sides of �900 nm and
average heights of �4 nm, corresponding to roughly one
monolayer of neutravidin-TRITC (Figure 2C). Having a
single layer of printed neutravidin avoids the desorption
occurring in multilayer deposits, and thus guarantees the
long-term stability of the subsequent anchorage of
the DNA molecules. As illustrated in Figure 2D for
2083 bp DNA, the 800-nm-sized sites, when occupied,
harbour only a single DNA–bead complex. A large-scale
observation of the arrays shows that 60% of the sites were
occupied by single wriggling beads, with non-specific
attachment remaining scarce, and most beads remaining
mobile for up to 12 h (Figure 3 and Supplementary
Movie 1). Importantly, similar satisfactory results
were obtained with shorter DNA molecules of 1500,
798 and 401 bp. Our method thus allows us to acquire
data from hundreds of single DNA molecules
simultaneously.
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Figure 2. Images of microcontact printed patterns. (A) Fluorescence image of an array of rhodamine-labelled neutravidin large-scale features of 5 mm
width (red channel). (B) Fluorescence image of the same array after incubation of beads (green channel) conjugated to DNA molecules (2083 bp).
Such an organization is observed over a few millimetres range. (C) AFM topographical image of an array of neutravidin small-scale features of
800 nm width and corresponding typical profile. (D) Fluorescence image of an array of 800-nm sized features after incubation of beads (green
channel) conjugated to DNA molecules (2083 bp). Such an organization is observed over a few millimetres range.
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Validation of the biochip for parallelized TPM
measurements

For TPM analyses, the DNA-tethered beads were imaged
at 25Hz by using a dark-field microscope equipped with a
CCD camera over a region covering 2000 sites of the 800-
nm-sized square arrays (in practice about 1200 beads were
monitored simultaneously). The 2D projections of the
bead trajectories were determined by a centroid calcula-
tion estimated with an 8-nm precision. An important
fraction of the wriggling beads (�50%) showed symmetric
in-plane trajectories, which was our primary criterion to
consider them as valid for further analysis. The amplitude
of the bead motion at time t is measured as the variance of
the bead position corrected for the experimental drift
averaged over a time interval Tav=2 s centred on t
(Figure 4A). We measured the equilibrium amplitudes of
motion for DNA molecules of 2083, 1500, 798 and 401 bp
and found a good coincidence with the standards estab-
lished in conventional conditions with a continuous layer
of anchoring molecules deposited on the glass surface

(Figure 4B). The integration of TPM in the biochip thus
preserved its spatio-temporal resolution, which is intrin-
sically, rather than instrumentally, limited by the principle
of the technique (20).

Activity of the T7 bacteriophage exonuclease

To validate the enhanced abilities of TPM-on-a-chip, we
analysed the hydrolysis of duplex DNA by the T7 bac-
teriophage exonuclease (24,25), which is a 50–30 DNA
exonuclease that had not yet been explored by a
single-molecule method. T7-exo, however, initiates cataly-
sis on free 50 extremities. Since the 50-ends of the DNA
molecule used in our biochip are protected by the bead
and coverslip surfaces, T7-exo should thus have no
activity in our assay unless the dsDNA substrate is artifi-
cially nicked. We took advantage of the presence of a
binding site for the site-specific Nb.BbvCI endonuclease
to create a nick in the 2083 bp DNA molecules analysed in
this study. The T7-exo could then initiate its attack at a
specific locus: 560 nt from the biotinylated end
(Figure 5A). After 20 min of incubation, the T7-exo was
removed by rinsing steps with a buffer containing SDS to
denature any remaining trace of the enzyme. The TPM
analysis then revealed a single population of DNA mol-
ecules with average amplitude of motion having decreased
from 235 to �100 nm in agreement with that estimated
for a 560 bp dsDNA extended by a 1520 b ssDNA
(Figure 5B). Indeed, the calculated maximum value of
the amplitude of motion is equal to 109 nm as given by
the square root of the sum of the square of the amplitude
of motion for the remaining ds segment (�1002 nm2, see
calibration curve Figure 4B) and the square of the ampli-
tude of motion for the ss segment, which we estimate to be
close to 432 nm2 assuming a 1.3 nm persistence length in
the presence of 10mM Mg2+ (26).
The full enzymatic conversion of the distal 1520 bp

dsDNA segment was further confirmed by testing the
activity of a series of restriction enzymes that only cut
dsDNA. By visualizing the detachment of the beads con-
secutive to the injection of the restriction enzymes, we
verified that the 2083 bp DNA partially converted to
ssDNA was only sensitive to the one targeting a site
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Figure 3. Dark-field image of hundreds of DNA–bead complexes indi-
vidually immobilized on the neutravidin sites. Printed position marks,
separated by 100mm, harbour DNA–bead complexes, which are thus
visible. The red frame delineates the region of capture of the Movie S1.
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located within the fragment supposed to remain double
stranded (Table 1). When trajectories of individual beads
were studied over time after the addition of the exonucle-
ase, linear decreases of the amplitude of motion were
predominantly observed with an average duration of 275
s, leading to an estimated dsDNA to ssDNA conversion
rate of 5.5 nt/s (Figure 6A).
Bulk assays have previously led to the classification of

T7-exo as a non-processive enzyme (27). The activity of a
non-processive enzyme is characterized by the successive
attachment of an enzyme and its replacement by another
enzyme after it has detached from the DNA strand. Our
results, obtained with the lowest enzyme concentration
leading to a detectable effect, are exempt of pauses or
plateaux on the TPM traces that should be observed ac-
cording to this scheme and do thus suggest otherwise. In
rare cases, transitions occurred at random locations
towards a slower progression of the enzymatic conversion
(7%) and pauses of the enzymatic reaction were detected

(2%). Such subtle characteristics of the molecular mech-
anisms could not have been unveiled by conventional
approaches. The full distribution histogram of the
velocity of conversion of the exonuclease (Figure 6B)
was obtained in a single run of 1 h of observation
instead of 40 h by using the conventional TPM
approach. In addition, the time for data analysis was dras-
tically reduced by the use of dedicated software allowing
real-time computation of the images (Magellium, France).
There is thus a clear-cut gain of TPM-on-a-chip in the
efficiency of data collection and analysis.

CONCLUSION

In summary, we have developed an easy-to-implement
approach for the multiplexed monitoring of the
dynamics of the conformational changes of single DNA
molecules by TPM. Our TPM-on-a-chip method has
revealed unexpected characteristics of the enzymatic

Table 1. Number of wriggling and valid beads (excluding those stuck) visualized in a field of observation before and after the action of the

restriction enzymes EcoRI, BamHI or EcoNI on a 2083 bp dsDNA or a T7 exo-modified 2083 bp DNAa

DNA substrates EcoRI BamH1 EcoNI

Ds 2083 bp DNA (%) 472 (100) 519 (100) 538 (100)
Id. after restriction enzyme (%) 74 (15.7) 10 (1.9) 39 (7.3)

T7-modified 2083 bp DNA (%) 266 (100) 278 (100) 310 (100)
Id. after restriction enzyme (%) 41 (15.4) 180 (64.8) 274 (88.4)

aThe initial numbers of valid beads tethered by T7 exo-modified 2083 bp DNA are smaller than those found for 2083 bp dsDNA because we
discarded the beads whose amplitudes of motion were not modified after the T7 exonuclease action.<TBLFN>
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mechanisms of the T7 bacteriophage exonuclease, a sup-
posedly well-known enzyme, thereby providing the proof
of concept for its efficiency for high-throughput analyses
of nucleic acid enzymes and other DNA–protein inter-
actions. We anticipate that this new generation of DNA
chips (16,17,28) will offer promising opportunities for the
broader use of single molecule experiments in general and
their potential applications in diagnosis and screening.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Movie 1.
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